Section 3.7 Fonctions rationnelles
¶Exercice 3.7.1.
Associez chaque fonction rationnelle de la colonne de gauche à sa décomposition en fractions partielles parmi les choix proposés dans la colonne de droite.
(a) \(\displaystyle\frac{3x^2+4x+2}{x^3+2x^2+x}\)
(b) \(\displaystyle\frac{x^2+3x-5}{x^3+2x^2-x-2}\)
(c) \(\displaystyle\frac{2x^3-8x^2+9x-1}{x^2-4x+3}\)
(d) \(\displaystyle\frac{x^2+4x+1}{(x+1)(x^2+2x+2)}\)
(I) \(\displaystyle 2x-\frac{1}{x-1}+\frac{4}{x-3}\)
(II) \(\displaystyle\frac{7}{2(x+1)}-\frac{7}{3(x+2)}-\frac{1}{6(x-1)}\)
(III) \(\displaystyle-\frac{2}{x+1}+\frac{3x+5}{x^2+2x+2}\)
(IV) \(\displaystyle\frac{2}{x}+\frac{1}{x+1}-\frac{1}{(x+1)^2}\)
Réponse
(a) - (IV)
(b) - (II)
(c) - (I)
(d) - (III)
Exercice 3.7.2.
Caculez les intégrales indéfinies suivantes.
- \(\displaystyle \displaystyle\int\frac{x^3+x}{x-1}\,dx\)
- \(\displaystyle \displaystyle\int\frac{1}{x^2-25}\,dx\)
- \(\displaystyle \displaystyle\int\frac{x^2+2x-1}{2x^3+3x^2-2x}\,dx\)
- \(\displaystyle \displaystyle\int\frac{x^4-2x^2+4x+1}{x^3-x^2-x+1}\,dx\)
- \(\displaystyle \displaystyle\int\frac{x^3+x-1}{(x-1)(x-3)^2}\,dx\)
- \(\displaystyle \displaystyle\int\frac{1-x-2x^2-x^3}{x(x^2+1)^2}\,dx\)
Réponse
- \(\displaystyle \displaystyle\frac{x^3}{3}+\frac{x^2}{2}+2x+2\ln|x-1|+C\)
- \(\displaystyle \displaystyle\frac{1}{10}\ln\left|\frac{x-5}{x+5}\right|+C\)
- \(\displaystyle \displaystyle\frac{1}{2}\ln\left|x\right|+\frac{1}{10}\ln\left|2x-1\right|-\frac{1}{10}\ln\left|x+2\right|+C\)
- \(\displaystyle \displaystyle\frac{x^2}{2}+x-\frac{2}{x-1}+\ln\left|\frac{x-1}{x+1}\right|+C\)
- \(\displaystyle \displaystyle x-\frac{29}{2(x-3)}+\frac{27}{4}\ln|x-3|+\frac{1}{4}\ln|x-1|+C\)
- \(\displaystyle \displaystyle\ln|x|-\frac{1}{2}\ln(x^2+1)-\arctan(x)-\frac{3}{2(x^2+1)}+C\)