Sauter

Section 3.9 Intégrales impropres

Déterminez si l'intégrale donnée est convergente ou divergente. Si elle converge, donnez-en la valeur.

  1. \(\displaystyle \int_0^{+\infty}\frac{1}{1+x^2}\,dx\)

  2. \(\displaystyle \int_2^5\frac{1}{\sqrt{t-2}}\,dt\)

  3. \(\displaystyle \int_0^4\frac{1}{x^2-4}\,dx\)

  4. \(\displaystyle \int_7^{+\infty}\frac{1}{x^2-5x+6}\,dx\)

  5. \(\displaystyle \int_0^7\frac{1}{x^2-5x+6}\,dx\)

  6. \(\displaystyle \int_0^{\pi/2}\sec\theta\,d\theta\)

  7. \(\displaystyle \int_0^1\ln x\,dx\)

  8. \(\displaystyle \int_1^{+\infty}\frac{e^{-\sqrt{x}}}{\sqrt{x}}\,dx\)

  9. \(\displaystyle \int_1^{+\infty}\frac{\ln x}{x}\,dx\)

  10. \(\displaystyle \int_0^5\frac{y}{y-2}\,dy\)

Réponse
  1. \(\displaystyle\frac{\pi}{2}\)

  2. \(\displaystyle 2\sqrt{3}\)

  3. divergente

  4. \(\displaystyle \ln(5)-2\ln(2)\)

  5. divergente

  6. divergente

  7. \(\displaystyle -1\)

  8. \(\displaystyle\frac{2}{e}\)

  9. divergente

  10. divergente