Section 3.9 Intégrales impropres
¶Exercice 3.9.1.
Déterminez si l'intégrale donnée est convergente ou divergente. Si elle converge, donnez-en la valeur.
\(\displaystyle \int_0^{+\infty}\frac{1}{1+x^2}\,dx\)
\(\displaystyle \int_2^5\frac{1}{\sqrt{t-2}}\,dt\)
\(\displaystyle \int_0^4\frac{1}{x^2-4}\,dx\)
\(\displaystyle \int_7^{+\infty}\frac{1}{x^2-5x+6}\,dx\)
\(\displaystyle \int_0^7\frac{1}{x^2-5x+6}\,dx\)
\(\displaystyle \int_0^{\pi/2}\sec\theta\,d\theta\)
\(\displaystyle \int_0^1\ln x\,dx\)
\(\displaystyle \int_1^{+\infty}\frac{e^{-\sqrt{x}}}{\sqrt{x}}\,dx\)
\(\displaystyle \int_1^{+\infty}\frac{\ln x}{x}\,dx\)
\(\displaystyle \int_0^5\frac{y}{y-2}\,dy\)
\(\displaystyle\frac{\pi}{2}\)
\(\displaystyle 2\sqrt{3}\)
divergente
\(\displaystyle \ln(5)-2\ln(2)\)
divergente
divergente
\(\displaystyle -1\)
\(\displaystyle\frac{2}{e}\)
divergente
divergente